Innovation, Quality, High technology

Researchers design the building blocks of synthetic muscle using computational method

Muscle is made up of molecular motors called myosin that form complex combinations to perform specific functions, such as powering muscle contraction. Synthetic myosin could one day be used in regenerative medicine and robotics. Credit: Paul Egan/College of Engineering, Carnegie Mellon University

Each time you flex your bicep, millions of molecular motors work together in a complex process inside your muscle. These motors—called myosin—are chemically-powered proteins. Combinations of them perform different muscular functions like maintaining a heartbeat or bearing weight. 

In order to develop synthetic muscles for applications in regenerative medicine or robotics, scientists must understand which complex combination of myosin produces each desired action. This would require a labor-intensive process of nanoscale trial and error that could take years in the laboratory.

Researchers at Carnegie Mellon University’s College of Engineering have taken a multidisciplinary to solving this problem. By coupling computational design search methods with biomechanical fundamentals, they created a formal approach for designing myosin systems with specific properties. The findings were published in Proceedings of the National Academy of Sciences this week.

The team developed a new computational model that designs systems where multiple myosin types operate together and demonstrates the benefits over different single types of myosin. Laboratory experiments then confirmed the computational predictions.

“This computational method will help us to understand muscle better through one of its building blocks, myosin, and help us toward building synthetic muscle in the future. It is similar to using an erector set with nanometer sized proteins to build a moving system,” said Philip LeDuc, a professor of and biomedical engineering.